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Abstract 

The problem to find an optimal control for a multi-location inventory model with lateral 
transshipments in general can not be solved in an analytical way. The main reason for having 
only a few results on multi-location models with lateral transshipments is the fact that the 
solution of such models is connected with a lot of analytical and numerical problems. In the 
case of non-linear cost functions no analytical solutions exist until now, and they will hardly 
be expected. The present paper deals with the extension of our inventory model to standing 
expenses for orders (K>0). This new assumption was proved to be the reason for changing the 
form of the optimization problems’ objective function. Hence, there are no information about 
the structure of the optimal order and transport decisions to this day. Therefore, we will 
describe an optimization method which is based on the combination of simulation and parallel 
evolutionary algorithms. The objective is to select the best control strategy from a given set of 
different strategies and to optimize the parameters of this strategy. 
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1. Introduction 

The investigation of N-location models with lateral transshipments, N≥2, is an important 
problem for mathematical inventory theory as well as for inventory practice. The combination 
of N locations can result in a system with vertical, horizontal, and mixed structure. While 
Echelon-models are widely investigated the results on systems with horizontal structure are 
smaller. The two-location-one period case with linear cost functions is considered by 
AGGARWAL (1967) and KÖCHEL (1975). KÖCHEL (1982) investigates the N-location-infinite-
period model with linear cost functions for the first time. The effect of lateral transshipment 
on the service levels in a two-location-one-period model is studied in TAGARAS (1989). A 
dynamic model with finite horizon is examined by ROBINSON (1990). In all works no standing 
expenses are assumed. Some results on a two-location-one-period model with standing 
expenses for orders are given in HERER and RASHIT (1995). 
   Thus corresponding investigations should be concentrated on algorithmic solutions and/or 
various search procedures. One very promising attempt in this direction is the application of 
evolutionary algorithms (EA), which was presented in a paper by ARNOLD (1995) at 2nd ISIR-
Summer School 1995 in Portorož. In addition to this paper we extended our inventory model 
to standing expenses for an order (K>0). This new assumption was proved to be the reason 
for changing the form of the optimization problems’ objective function. Hence, there are no 
information about the structure of the optimal order and transport decisions to this day. 
   The investigated model is described briefly in the next section. Section 3 gives an survey of 
the simulation algorithm for our multi-location inventory model. Three main order policies 
are introduced in section 4. A special parallel co-evolution is shown in section 5. The main 
results and an outlook for further investigations will be outlined in the final section 6. 



2. A Multi-Location Inventory Model with Transshipments 

The investigated multi-location inventory model with transshipments is described just briefly. 
For further and more detailed information have a look at the paper of professor KÖCHEL in-
cluded in these proceedings. 
   There are N≥2 locations which are all storing the same product. At the beginning of a 
period t=1, 2, ... additional inventory can be ordered by an order decision (OD). Ordered 
inventory is received immediately by cost ki>0 (ordering costs) for one unit at location i and 
standing expenses for an order K>0 for all locations. During period t demand occurs in 
accordance with a random vector  s(t) = (s1(t), ..., sN(t)). It is assumed that { s(t); t = 1, 2, ... 
} is a sequence of independent identically distributed random vectors. Let E[ si(t) ] =: mi exist 
with 0 < mi < ∞ for i=1(1)N. At the end of a period it is possible to redistribute the present 
stock by a transport decision (TD). Transshipment occurs immediately by cost cij>0 
(transport costs) for one unit transported from location i to location j. There are also standing 
expenses for transport C>0 possible. After this the unsatisfied demand is backlogged and 
costs are incurred - holding cost hi>0 per unit of undemanded inventory or shortage cost pi>0 
per unit of unsatisfied demand at location i. The problem is to find a policy (i.e. a sequence of 
OD’s and TD’s) which minimizes the expected average cost over an infinite horizon. Such a 
policy is called “average optimal“. 
   Three questions are interesting with reference to the described inventory model: 
1. Is there any optimal policy? 
If yes: 
2. How can we find such a policy? 
3. How much mean costs are expected per period? 
   A positive answer to the first question is given by the results of the so called periodical 
steady stated MARKOVian decision model (see KÖCHEL 1980, 1982 and 1988). That means the 
optimal policy is steady: For all periods t=1, 2, ... the same policy for choosing an OD and a 
TE is valid. 
   The other two questions are answered by the following statements of KÖCHEL 1982 and 
KÖCHEL 1988 about this inventory model with K=0 (no standing expenses for any order): 
(i) A solution S* = ( S1, ..., SN ) of the convex optimization problem min{ g(a): a ≥ 0 } 

exists with 
     N 
g(a) = g(a1, ..., aN)   =  ∑ [ ki mi + Li(ai) ] - C(a)             (1) 

   i=1 
as the mean value of expected costs at one period with a vector of stocks a ≥ 0 and optimal 
TD. In this connection 
Li(ai) = E[ hi max(0; ai - si) + pi max(0; si - ai) ] 
represents the expected holding and shortage costs at location i with stock ai in one period, 
i=1(1)N. C(a) is the expected reduction in costs by the optimal TD for an vector of stocks 
a generated by the OD. 

(ii)The optimal OD is of a (S, S)-type (base stock policy). That means, at the beginning of a 
period the vector of stocks  x = (x1, ..., xN) ≤ S* is stocked up on the vector S*. 

(iii)The optimal TD is the solution of an open linear transporting problem with the cost 
coefficients Cij := hi + pj - cij + kj - ki, i, j=1(1)N, i ≠ j, with locations of positive remaining 
stock as suppliers and locations of negative remaining stock as consumers. 

Now we turn us towards the case of K>0 standing expenses for orders. For this no statements 
about the form of the optimal OD or TD are proved. That’s why we recommend to use an 
order decision of ( σ, S )-type, shown in figure 1. 



It could be described in general: If σ ⊆ RN and S ∈ RN are fixed then we will apply to the 
current stocking vector x ≤ S the rule 
 

IF  x ∈ σ  THEN   x := S  { restock to S } 
         ELSE   { no order }. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 1: The effect of a ( σ, S )-order decision for a two-location inventory 
   for example. The set σ ⊆ RN is called the order domain, the point 
   S ∈ RN is the restocking level. 

 
The recommendation to use an order decision of ( σ, S )-type seems to be most practical 
because this rule is also optimal with K>0 for the one-inventory-model (here are S∈R1 and σ 
= { x∈R1: x < s for a s∈R1 with s<S }, see GIRLICH, KÖCHEL and KÜENLE (1990)) as well as 
for the multi-goods model (see KÜENLE 1986). To explain it in simple words: Since we order 
it should pay. That means the fixed order costs K plus the expected costs for the optimal 
stocking level should be lower than the expected costs for the case of  “doing nothing“. 
   After confining us to the OD's class of ( σ, S )-type, we search for the best strategy and its 
optimal parameters σ* and S* now. That could be done in two steps: 
Step 1: Determination of the optimal restocking level  S* as the minimum of function 
g  from equation (1). 
Step 2: Determination of the optimal order domain σ* := { x∈RN : K + g(S*) < g(x) }. 
However, there is generally no analytical solution for the function g with N>2 defined with 
equation (1). The reason is that there is no closed solution for the open linear transporting 
problem with more than two locations (statement (iii)). Hence, the function C(.) which is used 
in g and accordingly g itself can't be expressed in numbers. To clear this hurdle we use 
simulation. 
 
 

3. Simulation 

Obviously the value of C(a) is a mean for every valid vector of stocks a : C(a) = E[ C(a, s) ] 
and g(a) = E[ g(a, s) ]. C(a, s) and g(a, s) are two random variables representing the 
reduction in costs and the value of costs in one period with OD a and the optimal TD. Let s 
be one realization of the demand s and g(a, s) the costs in one period with OD a, demand s 
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and an optimal TD. Because we can determine the optimal TD for every given vector of 
stocks a and every realization s of demand, the sampling mean 

g(n)(a) := 1/n [ g(a, s(1)) + ... + g(a, s(n) ) ]                  (2) 
for every sampling 

s(1)   = ( s1
(1), ..., sN

(1) ), s(2)   = ( s1
(2), ..., sN

(2) ), ..., s(n)  = ( s1
(n) , ..., sN

(n) )          (3) 

of demand and every sampling rate n≥1 is an estimated value of g(a) and the estimate 
function g(n) is a convex function in reference to a for every n and every sampling (because 
the convexity of function g) the following simple method for simulation based optimization 
of g can be used: 
1. A sampling of demand (3) with rate n is generated accordingly to the distribution function 

of s by simulation. 
2. The accompanying estimated value g(n)(a) is computed for given ODs a in accordance 

with (2). 
3. Any method for the optimization of convex functions is used to determine a better OD. 
4. Stop, if no improvement is possible. 
5. After abort the OD a´ and the accompanying estimated value g(n)(a´) are considered to be 

an approximation to the optimal OD a* and  the minimum expected costs g(a*). 
Now we can give a brief description of what a simulation (evaluator) has to do: 
 
Restrictions  number of locations:  N 
   number of periods:  n 
 
1.  Initial values xi = x0 , i=1(1)N { x0 optimal stocks for independent locations } 
  
2.  Order decision applying order policy 
 
       , if x is in order domain 
 order costs:    Gbestell(k)  =  
       , else 
 
                 , if x is in order domain 
 vector of stocks:  ai    =  
                 , else 
 
3.  Demand realized according to the probability distribution 
 vector of demand:  si     = distributioni (distribution parameter) 
 vector of stocks:  yi     = ai - si 
 
4.  Transport 
 transport matrix: { tij } as optimal TD 
 
        N   N 
 transport costs:  Gtransp(k) =  ∑   ∑   tij cij 
       i=1 j=1 
 
         N 
            yi  -  ∑  tij  , if  yi > 0 
              j=1 
 vector of stocks:  y’i  = 
         N 
            yi +  ∑  tji  , if  yi < 0 
              j=1

K + k (S xi i
*

i
i=1

N
−

⎧

⎨
⎪

⎩
⎪

∑ )

0

S
x

i

i

*⎧
⎨
⎪

⎩⎪

⎧
⎨
⎩ 



 
5.  Holding 
       N 
 holding costs: Glager(k)    =  ∑  [ hi  max( 0, y’i ) + pi max( 0, -y’i ) ] 
      i=1 
 
6.  Repeat 2. to 5. n times 
 
7.  Output estimation 
             n 

( order domain, S* ) = 1/n   ∑  [Gbestell(k) + Gtransp(k) + Glager(k) ]. 
            k=1 

 
 
4. Determination of the Optimal Order Domain 

As described in section 2 the determination of the optimal order domain σ* is another partial 
problem of our optimization. If we assume a continual demand then we will have to decide 
the affiliation to the order domain σ* for an infinity set of stock vectors. At the moment we 
choose an approximate solution according to the following statement: 
The set    

                σ σ* : :=  {   } \  N * *x R x S∈ ≤  
is convex which follows from the convexity of function g. The approximation consists now of 
the restriction to a set of simple structured classes of σ -sets (and so σ-sets). We consider the 
following classes (called “strategies“ in future) in this paper: “rectangle“-sets, “triangle“-sets 
and “ellipse“-sets. 
 
- Rectangle-Strategy: 

The order domain σ is described by 

σ ( s ) := { x = (x1, x2, ..., xN) : x1 ≤ s1 ∨  x2 ≤ s2 ∨ ... ∨ xN ≤ sN } 
 

Figure 2: The rectangle-strategy for 2 locations with s = ( s1, s2, ..., sN ) ≤ S*. 
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- Triangle-Strategy: 

The order domain σ is described by a hyperplane through N points. The coefficients for the 
equation of the plane are obtained by the solution of a N+1 dimensional linear equation 
system. 

            Figure 3: The triangle-strategy for 2 locations with s = ( s1, s2, ..., sN ) ≤ S*. 
 
- Ellipse-Strategy: 

The order domain σ is described by a hyperellipse through N points. The coefficients for the 
equation of the ellipse are obtained by the semiaxes from the centre S* by 1/(Si-si), i=1(1)N. 

             

 Figure 4: The ellipse-strategy for 2 locations with s = ( s1, s2, ..., sN ) ≤ S*. 
 
Now it is quite clear that we have to search for both a function which allows a good 
approximation to the bounds of σ (see figures 2 to 4) and the stocking levels s* and S* (as 
parameters of this function) for an optimal σ*. In the next section we discuss a parallel co-
evolution of different populations (each for a special strategy) distributed on several 
processors. Our aim is to find the best strategy and its optimal parameters s* and S*. 
 
 
5. Optimization with Parallel Co-Evolution 

From the mathematician’s, engineer’s and computer scientist’s point of view the evolution is 
an extreme powerful optimization method. Basic notions and concepts of evolutionary optimi-
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zation, as well as a long list of references was given in a paper by ARNOLD (1995), presented 
at 2nd ISIR-Summer School 1995 in Portorož. You can find a good introduction to this topic 
in MICHALEWICZ (1992). Throughout the paper we will use biological terms. We believe that 
this is a source of inspiration and helps one to understand the algorithm intuitively. In many 
papers, it has been reported that evolutionary algorithms can find better solutions than 
heuristic algorithms for many problems. However, evolutionary algorithms require a lot of 
computation time for simulating the survival of the fittest of a number of individuals. 
Therefore, in order to outperform heuristic algorithms in both the quality of solutions and the 
search time, we need parallel processing of co-evolution. 
 

Figure 5: The concept of parallel co-evolution with 3 different strategies. At the 
  beginning each population has a constant number of individuals which 
  all use the same strategy. 

 
   Figure 5 shows our concept of parallel co-evolution. It is implemented with Parallel Virtual 
Machine (PVM), version 3. We use one PVM-process(or) for each strategy. At the beginning 
each population i has a constant number of individuals Pi which all use the same strategy. The 
individuals are represented by two chromosomes: a vector s* and a vector S*, each of real 
numbers. After a number t of generations with isolated life (populations of islanders) some 
individuals (independent of their fitness!) spread out and migrate to other populations by 
random. These individuals will deleted in their origin population. That means, the number of 
individuals in each isolated population can increase and decrease dynamically during the 
optimization process, but the total of all individuals is constant. Now the isolated life goes on, 
but t should be decreased after each migration cycle for a better performance. 
   This “coarse-grained parallel evolution algorithm“, in which several large populations are 
evolved in parallel with little interaction, was described quite often in literature (BELEW and 
BOOKER (1991), FORREST (1993), SCHWEFEL and MAENNER (1991)). The communication 
overhead is reduced to a small number of floating individuals. Each processor only sends out 
some individuals to some other processors after t generations. No other information is 
exchanged between processors. 
 At the moment we suggest the following parameters for the evolution 

 - Pi = 10  at  t = 0  for all strategies i; 
 - t = 200  for the first migration cycle; 
 - migration rate p(G) =0.5 

   These parameters (especially Pi) should be adjusted to the specific computer hardware. The 
evolution described above does the following: At first each processor optimizes the 

  Processor A
population with  
     strategy 1

  Processor B
population with  
     strategy 2

  Processor C
population with  
     strategy 3

  Processor ?
population with  
     strategy ?

  Migration
with rate p(G)

 



parameters of one strategy by reproduction, recombination, mutation and selection. This job is 
done by an evolution strategy that takes place inside of each processor (see figure 6). Notice, 
mating is always possible only with two individuals of the same strategy! After this we have a 
set of isolated populations with individuals of a relatively high fitness (minimal inventory 
costs). 

      Figure 6: The evolution inside each isolated population 
 
This is necessary to make sure that the individuals which now migrate and start a direct 
ranking between different strategies have nearly optimal parameters for their own strategy. To 
the end of the evolution only one strategy should survive. The individuals of that strategy will 
live in all populations and the whole performance of the distributed hardware is used to find 
the optimal parameters s* and S* for the best strategy. You can see that our method combines 
the two optimization steps of the conclusions carried out at the end of section two. 
   The optimization should be aborted if there is no improvement over a lot of generations. A 
“lot of“ means that we cannot give any more accurate value (see ARNOLD (1995)).  
 
 
6. What is there to be done? 

In this paper, we have proposed a new parallel evolutionary algorithm which gives the 
possibility to optimize both strategy and parameters of the strategy for the order policy of a 
multi-location inventory with transshipments. Unfortunately, we cannot present any 
exemplary numerical results so far. The reason for this lack of information is that we have to 
improve our simulator. Some problems came up only after a few of test runs: The open linear 
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transporting problem need more investigation to consider the standing expenses for ordering 
(K>0). The Gaussian elimination method for solving the system of linear equations of a plan 
equation of the hyperplane for the “triangle“-strategy had to be redesigned just like that. The 
“ellipse“-strategy is a new extension of the unsuitable “circle“-strategy. Nevertheless, you 
will find some interesting results for the “triangle“-strategy in the paper of HADER included in 
these proceedings. 
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