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1. Introduction

The most problems in inventory management have a difficult and complex structure without
any recognizable function which is optimizable by analytic algorithms. That is the same like in a
lot of other logistic, transport or production related fields. In some special cases we know
parts of the objective function or some characteristics of the systems behaviour by given
parameters. We can find global strategies for ordering, stocking levels or shipment by
investigation of models with many assumptions. These assumptions lead not seldom to a
strange limitation of the models’ validity. Therefore, my question was: Is there any other way
to solve such problems without limiting assumptions and strenuous analytical investigations?
The optimization of inventories, production systems, transport and logistic problems means at
present: An integral combination of quick simulators with efficient optimization tools. The
classic optimization methods like the gradient method, the dynamic programming or any kind
of heuristics come across limits very often concerning runtime and complexity. Therefore, we
need optimization algorithms, which change automatically the input of parameters for the next
simulation run by considering the user defined objectives and the results of the past runs.
Evolutionary algorithms are an optimization methodology based on a direct analogy to
Darwinian natural selection, recombination and mutation in biological reproduction. The
evolution process thus converges to individuals with an optimal fitness to the considered
environment. The main advantages of these algorithms lie in great robustness, problem
independence and high parallel working. So far, evolutionary algorithms were most successful
in parameter optimization domains. However, even there are certain problems, as lack of final
tuning capabilities and severe time complexity, prohibit their wider use on most moderately and
highly complex problems.
Evolution strategies are a subset of evolutionary algorithms. They provide a powerful solving
of complex problems with more or less continuously changeable parameters, e.g. current
optimization, vector or parameter optimization in general. The aim of my work was to
investigate the applicability of evolutionary algorithms to the optimization of stocking levels
and inventory costs in general. The problem to find an optimal control for a multi-location
inventory model with lateral transshipments in general can not be solved in an analytical way.
The main reason for having only a few results on multi-location models with lateral
transshipments is the fact that the solution of such models is connected with a lot of analytical
and numerical problems. In the case of non-linear cost functions until now no analytical
solutions exist, and they will hardly be expected. Thus corresponding investigations should be
concentrated on algorithmic solutions and/or various search procedures. One very promising
attempt in this direction is the application of evolutionary algorithms. Since the last decade the
literature on evolutionary algorithms has been growing. For an insight into base methods and
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main fields of applications see e.g. [18], [3], [5] or [22] for current problems and applications.
However, in fact there are no applications to inventory models, especially to multi-location
models with transshipments. A first attempt in that direction was made by ARNOLD in [2].
The present paper is devoted to the search of order decisions, which are optimal or at least
sub-optimal for the N-location-infinite-period model with transshipments. The investigated
model is described in the next section, and the main results will be outlined. Basic notions and
concepts of evolutionary optimization are given in Section 3. Section 4 contains the
evolutionary optimization of the considered multi-location model for 4 and 5 locations. Some
numerical examples show the practicability and give an idea of the performance of the
proposed approach. A short summary and an outlook for further investigations are given in the
final Section 5.

2. The Multi-location Inventory Model with Transshipments

The investigation of N-location models with lateral transshipments, N≥2, is an important
problem for mathematical inventory theory as well as for inventory practice. The combination
of N locations can result in a system with vertical, horizontal, and mixed structure. The
classical Echelon-models (cp. [4]) belong to the systems with vertical structure. While
Echelon-models are widely investigated the results on systems with horizontal structure are
smaller. The two-location-one-period case with linear cost functions is considered by
AGGARWAL [1] and KÖCHEL [10]. KRISHNAN and RAO [14] deal with a N-location-one-period
model, where the cost parameters are the same for all locations. An approximate solution for
the N-location-one-period model is given by KÖCHEL [11]. KÖCHEL [12] investigates for the
first time the N-location-infinite-period model with linear cost functions. A dynamic model
with finite horizon is examined by ROBINSON [16]. The effect of lateral transshipment on the
service levels in a two-location-one-period model is studied by TAGARAS [21]. In all works no
fixed costs are assumed. Some results on a two-location-one-period model with fixed order
costs are given by HERER and RASHIT [7].
In KÖCHEL [12] the following inventory model is considered: There are N locations which are
all storing the same product. At the beginning of a period t =1, 2, ... additional inventory can
be ordered by an order decision (OD). Ordered inventory is received immediately by cost ki > 0
for one unit in location i. During period t demand occurs in accordance with a random vector
s(t) = (s1(t), ..., sN(t)). It is assumed that {s(t); t=1, 2,...} is a sequence of independent
identically distributed random vectors. Let E[ si(t) ] = µi exist with 0 < µi < � for i=1(1)N. At
the end of a period it is possible to redistribute the present stock by a transportation decision
(TD). Transshipment occurs immediately by cost cij > 0 for one unit transported from location i
to location j. After this the unsatisfied demand is backlogged and costs are incurred - holding
cost hi > 0 per unit of undemanded inventory or shortage cost pi > 0 per unit of unsatisfied
demand in location i. The problem is to find a policy (i.e., a sequence of OD´s and TD´s) which
minimizes the expected average cost over an infinite horizon. Such a policy is called average
optimal.
To fix somewhat narrower bounds for the optimization problem the following assumptions
concerning the cost parameters are introduced in [12]:

(A.1) hi + pj - cij ≥ ki - kj ;
(A.2) hj - hi + cij ≥ kj - ki and pi - pj + cij ≥ kj - ki ;
(A.3) ki + cij ≥ kj and cik + ckj ≥ cij ,  i, j, k =1(1)N, i≠j≠k.

These assumptions result from the background of the problem, and they have a clear economic
interpretation. Assumption (A.1) means the effectiveness of transshipments - the reward in the
present period from the transport of one inventory unit from location i with positive rest stock
to location j with negative rest stock is not smaller than the corresponding alteration of order
cost in the following period. The relative independence of all locations is expressed by
assumption (A.2) - it is not profitable to redistribute an inventory unit between locations with
positive rest stocks as well as an unsatisfied demand unit between locations with negative rest
stocks. Assumption (A.3) stands for shortest way conditions - it is more expensive to order
and to transship via another location than by the direct route. With assumptions (A.1) to (A.3)
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the considered optimization problem is solved in [12] and [13]. To report the main results I
denote the inventory level after an OD by a = (a1, a2, ..., aN) and the vector of rest stock after
occurring realization s = (s1, s2, ..., sN) of the demand by y = a-s. Transshipment is organized
in accordance with TD B = (bij) with bij ≥ 0 as the transported quantity from location i to
location j;  i, j =1(1)N.

Property 1 (cp. Satz 3.1 in [12]) :
The set of stationary policies contains an average optimal policy, i.e., the optimization can be
restricted to policies which use in all periods the same rules to choose the OD or TD
respectively.
Let g (.) be a function defined for a∈RN as

 N
(1) g(a) =  Σ  [ ki µi + Li(ai) ] - C(a) ,

i=1

where

(2) Li(ai) = E [ hi max( 0; ai - si) + pi max( 0; si - ai) ]

describes the expected holding and shortage cost in location i with stock level ai after OD,
i=1(1)N, and C(a) is the expected system’s gain from optimal TD (redistribution) if OD a was
chosen.

Property 2 (cp. Lemma 4.2 in [12]) :
There exists a solution a* of the convex problem min  g(a)  , where g(.) is defined by (1).

       a∈RN

Property 3 (cp. Theorem 2.2 in [13]):
(a) a* is the OD in the stationary average optimal policy, i.e., the average optimal order policy

is a (S, S) - policy with S = a* .
(b) For any rest stock vector y the optimal TD B* = (bij*) is a solution of an open linear

transporting problem with supplier set I+ = { i=1(1)N: yi > 0 }, consumer set
I- = { i=1(1)N: yi < 0 } and coefficients Cij = hi + pj - cij + kj - ki > 0 for i∈I+ and j∈I-.

Since C(a) = E [ C(a,s) ]   with   C(a,s)   =   Σ    Σ  bij Cij   for   s ≥(0, ..., 0),
            i∈I+  j∈I-

from Property 3 follows that an analytical tractable expression for function g(.) exists only for
N = 2 or if Cij = C > 0 for i, j =1(1)N, i ≠ j. In both cases the open linear transporting problem
in Property 3(b) has an analytical solution. In the general case there are at least two approaches
- approximate solution and simulation. The approach with the approximate solution replaces
the coefficients Cij by the constant C = min { Cij : i, j=1(1)N, i ≠j }. This has a twofold effect.
We have a lower bound C(a) for C(a), and a general solution of the transporting problem is
possible, i.e., C(a) is given in an analytical way for a∈RN. For more information see KÖCHEL
[11]. The simulation approach combines simulation and optimization and uses the following
procedure for defining nearly-optimal order decisions:

1. By simulation we generate a sample of demand realizations.
2. For given OD a∈∈RN we compute the estimated g(â) for g(a) defined in (1).
3. Since g(.) is convex for every sample we use one of the methods for minimizing a convex

function to find OD a which realizes the minimum.
4. We choose OD â as approximation for a* and the value g(â) as approximation for g(a*).

We remark, that this approach has the essential advantage that multi-location models with
arbitrary distributed demand and even with dependencies of the demand between locations can
be investigated. A crucial point for the effectiveness of the described procedure is that the
function to be minimized is convex. On the other hand the convexity of function g(.) is a
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consequence of the assumption that all cost functions in the multi-location inventory model are
assumed to be linear without any fixed cost factor. In the case of non-linear cost functions until
now analytical solutions don’t exist, and they will hardly be expected. Thus corresponding
investigations should be concentrated on algorithmic solutions and/or various search
procedures. One very promising attempt in this direction is the application of evolutionary
algorithms. Some basic notions and concepts in accordance to these are summarized in the
next section.

3. Evolutionary Optimization: Basic Notions and Concepts

What can we learn from nature? I will give the main answer to this question at first: A general
disorder is no chaos, but more likely a special case of order. We need this to understand the
working and philosophy of evolution. There must be a functional connection between the state
and the parameters of a (natural or artificial) system and its performance.
Here an evolution strategy is used for the search for average optimal OD’s for the multi-
location model with transshipments. To this end it follows now the formulation of the
inventory model, described in Section 2, in "evolutionary terms". It is easy to see how the
biological objects are in touch with the corresponding mathematical terms. Let

(3) W = { a∈RN : 0 ≤ ai < ∞ , i=1(1)N }

denote the parameter space which characterizes the considered system. It contains all OD’s a
(individuals) of the N-dimensional Euclidean space satisfying the restrictions of all N
components ai (genes). Parameter space W is called population. A subset G⊂W of OD’s
denotes a generation, i.e., a population at a certain moment. Furthermore, a given value of a
gene ai is called an allele. The objective function

(4) g :  W → R1

is defined as a mapping from the parameter space W to the set of real numbers R1. Value g(a)
represents the so called fitness of the individual a. The problem now is to find an individual

(5) a*∈W with g(a*) ≤ g(a) for all a∈W,

i.e., an individual with global minimal fitness. However, in general the performance of the
system or the fitness of an individual, respectively, can be statistically estimated only by
simulation, i.e., only an approximation gSim(a,t) can be used. Here t means the simulation time,
i.e., the time of observing the system. The value of t has a great impact on the accuracy of the
approximation from gSim(a,t) to g(a). If the simulation model is correct it holds

(6) lim  gSim(a,t) = g(a)  for all  a∈W.
t→∞

The evolution strategies were evolved by INGO RECHENBERG in Berlin (see [15]) and further
developed by HANS-PAUL SCHWEFEL at the university of Dortmund (see [19] and [20]).
These evolutionary algorithms work on a phenotypic level, i.e. they operate directly on the set
of real-valued object variables ai . The actual optimization process carried out by an
evolutionary algorithm can be described by an iterative scheme. This scheme is adaptable to
specific problems by some variable parameters, but it has to follow always the steps shown in
Fig.1. At first we have to choose a starting (or initial) population G0  by selecting P individuals
out of the parameter space W. We can do this by mere chance (uniformly distributed) or, if we
know some characteristics of the fitness function, we should take the initial individuals
(solutions in the parameter space) from the neighbourhood of the optimum. The example of
the Multi-location inventory model with transshipments shows you that we can find this
starting population by computing the best stocking levels for stocks without any shipment
between
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Figure 1. The basic evolutionary algorithm (from [9]).
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each other (see [12]). After the starting population is chosen in Fig. 1 follows the "Final?" -
question. The nature does not give us any answer to this important question! The natural
evolution is a (possibly infinite) continuous process without any recognizable final aim. The
reason lies in the sense of evolution: Adaptation of the beings to environmental conditions with
permanent change. But the investigated artificial systems have a concrete defined, functional
behaviour inside a more or less known "environment". Therefore, the search process should
stop after an/the optimum was found. This can be achieved by defining an epsilon-
neighbourhood around g(a) for a∈W. All fitness-values inside this epsilon-neighbourhood are
regarded of equal value. The evolution terminates when there is no essential improvement for
the best individual over some generations. Additionally, a maximum number of generations can
be set before the evolution process will start.
The good working of evolutionary algorithms depends on well chosen parameters. that means
if the offspring (population of children) has fewer individuals than P, we will have to select a
genetic operator carefully. The probabilities for the three main operators are:

p(C) for recombination (crossing over)
p(M) for mutation
p(R) for reproduction

Then it holds

(7) p(C) + p(M) + p(R) = 1 .

Each of these genetic operators needs one, two or more individuals (OD’s) for working. These
individuals are chosen from the parent population by a so-called selection-procedure. There are
a lot of different selection procedures like the roulette, linear ranking, tournament, (N,µ)-
selection. Every kind of selection must prefer individuals with a good fitness to such one with a
worse. Weak individuals ought to get a though little chance to pass their alleles to the next
generation yet. This is very important for the spread out of the individuals over the parameter
space. Otherwise the evolution will make a premature convergence to a local optimum, maybe.
The main operator mutation is realized by adding to each ai a normally distributed random
number with expected value 0 and standard deviation σi. The so-called strategy variables σi are
stored in an additional vector with length N. Theoretical considerations for a maximum rate of
convergence suggest that the optimal settings of the σi may depend on the distance from the
optimum, i.e., they are a local feature of the response surface (cp. [19]). Therefore, the genetic
information of each individual not only consists of the ai, but also of the strategy parameters σi

which also undergo mutation and recombination before they are used to mutate the ai.
The recombination is easy made by heredity of an objective variable ai from one of the two
parents, which will be uniform randomly chosen. The child’s deviation σi is the average of the
two parents’ deviations.
The performance of evolutionary algorithms depends on well chosen parameters like
population size P, number of genes N, number of generations Γ, probabilities of recombination,
mutation, and reproduction. There are many different suggestions for the "right" size P of the
population. We must face the fact that it is nearly always important to use as small a
population as possible, because the total number of fitness evaluations P•Γ should be small.
This demand is necessary since the time of fitness evaluation for one individual by simulation is
much more longer then all the time of creating the next generation. The values stated in
literature ( P=30 [17], P=50 [18] or P>50 [9]) have proved themselves time and again with
many experiments. SCHAFFER suggests in [17] the following formula:

(8) P  ≈ 1.65 • 2 0.21 • N .

If you look for a good set of parameters to create your own evolution for solving a specific
optimization, you will find it by HESSER in [8]. It is very time expensive to get a suitable and
acceptable set of parameters, because all parameters influence each other. But fortunately, the
evolutionary algorithms are very robust against little changes of their parameters.
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4. Some Optimization Results for the Multi-location Inventory
Model

A simulation tool was designed in [6] which approximates the inventory costs for given OD
over an observation time of maximum 1000 periods. Different demand distributions are
available. For the present investigations 500 periods are used only.
The first exemplary inventory model should consist of 4 stocks with the following
parameters:

K = (0, 0, 0, 0) ; no order costs
H= (1, 2, 4, 3) ; units per product
P = (10, 9, 11, 8) ; units per product

� �
         � � 5 7 4 �

C = � 7 � 8 5 � ; units per product
         � 9 8 � 7 �
         � 8 7 9 � �
         � �
Furthermore, we assume a normal distributed demand with a mean of

µ = (200, 300, 250, 150) and deviation σ = (30, 40, 20, 10)
units per period.
Now we have all parameters to start the simulation for a given stocking level. The obvious
conclusion is that one individual consists of 4 genes (see [2]).
The evolution process was started with these parameters:

•  size of parent population µ: 2
•  size of children population Γ: 10
•  number of generations G: 250
•  rate of crossing over p(C): 0.2
•  rate of mutation p(M): 0.7
•  rate of reproduction p(R): 0.1 (1 - p(C)-p(M))

Fig.2: The fitness-value of the best individual in every tenth generation.
The curve was got from 25 fix points by exponential regression:
certainty: 0.25253 correlation coeff: 0.50252 deviation: 0.000159
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The rates p(C), p(M) and p(R) will not changed during the evolution takes place. The first
individual of the start-population can be created by analytical solving of the problem for fully
independently working stocks (see [12]):

a(1) = (240, 336, 262, 156)

The second individual of the start population is reproduced simply from a(1)  by mutation.
Now we can start the evolution to find the minimum inventory costs and to observe its work.

There are a lot of interesting things recognizable in Fig. 2. At first the individuals spread out
from the start-point over the parameter space. The best individuals die because there are too
many sub-optimal individuals! I call it as the boy scout phenomenon. The evolution gains
implicit knowledge about the structure of the parameter space for itself. Only after a few
generations of knowledge acquisition the evolution will start to search for the real optimum.

The optimum was found after 250 generations by

a* = (238.8, 324.1, 256.6, 151.9)  with  g(a*) = 248.1  units of inventory costs.

The second exemplary inventory system should consist of maximum 5 locations with the
following parameters:

the order cost vector K = (0, 0, 0, 0, 0),
the holding cost vector H = (3, 5, 2, 4, 6),
the shortage cost vector P = (7, 9, 8, 11, 10) and
the transporting costs cij = 5 for i, j=1(1)5, i≠j.

Furthermore, we assume an exponentially distributed demand with the mean value vector

1/λ = (200, 300, 500, 400, 250)

demand units per period.

Obviously, an individual consists of 5 genes only, each for one location. The evolution process
was started with probabilities p(C) and p(M) shown on the left-hand side in Tab.1. These rates
will not be changed during the evolution process. The first individual of the starting population
can be created in an analytical way by computing the optimal OD for the case of independent
locations (see [12]): a(1) = (240, 308, 804, 528, 245). In the case of independent locations
these stocking levels lead to expected average costs of 7159 units of inventory costs.
Tab. 1 shows the results for 9 different combinations of parameter values for the inventory
model with 4 or 5 locations, respectively. Both were inquired with a [2/10] and a [4/8]
[parents/children] relation. This relation has an important influence on the probability of
survival for each individual.

���������������������������������������������������������������������������
�             �          4 stocks           �          5 stocks           �
���������������������������������������������������������������������������
�  p(M)  p(c) �    [2/10]    �     [4/8]    �    [2/10]    �     [4/8]    �
���������������������������������������������������������������������������
�  0.1   0.2  �  3861 - 380  �  3861 -  60  �  4398 - 440  �  4422 - 450  �
�  0.1   0.4  �  3800 - 440  �  3856 - 440  �  4426 - 360  �  4419 - 450  �
�  0.1   0.6  �  3859 - 450  �  3860 - 110  �  4422 - 190  �  4411 - 430  �
�  0.3   0.2  �  3793 - 350  �  3856 - 120  �  4413 - 120  �  4417 - 300  �
�  0.3   0.4  �  3860 - 380  �  3863 - 140  �  4417 - 300  �  4389 - 230  �
�  0.3   0.6  �  3863 - 430  �  3860 - 340  �  4414 - 240  �  4420 - 210  �
�  0.5   0.2  �  3860 - 310  �  3856 - 260  �  4416 -  50  �  4422 - 190  �
�  0.5   0.4  �  3867 - 480  �  3819 - 360  �  4436 -  70  �  4398 - 190  �
�  0.7   0.2  �  3861 - 360  �  3861 -  90  �  4425 - 470  �  4395 - 190  �
	�������������
��������������
��������������
��������������
���������������
Table 1: Results of the optimization. The left value in each column shows the best cost after

500 generations. The other value is the number of investigated generations until
this optimum was found.
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The data in Tab.1 allow the following conclusions:

(i)  3860 and 4420 units of money are good approximations for the optimal expected average
costs in the 4-location and 5-location case, respectively. Therefore, the costs for the 5-
location case decrease to 62 % of the costs which will arise for independent locations.

(ii)  The mutation rate p(M) should be greater than the recombination rate p(C). This statement
is generally valid for evolution strategies (cp. [19]).

(iii) To give an answer for a good approximation a to the optimal OD a* is not easy. For
instance, the simulation experiments of the 5-location system with a [4/8] parents-to-
children relation yield 233 < a2 < 313 . However, the corresponding estimated average
costs are approximately equal. These circumstance lead to the hypothesis that the area
around the optimum is very flat. Thus the approximation of g(a*) is sufficient, even though
the approximation a for a* has a great variance.

5. Conclusions

The evolutionary optimization needs about 3000 simulation runs, whereas an optimization
algorithm special designed for convex functions by HADER and WINKLER in [6] needs only
about 100 simulation runs for the problem with 4 locations. But, evolutionary algorithms are
suitable for a high performance optimization of very chaotic, completely unknown or non-
differentiable objective functions. Thus you can say that the considered inventory problem is
not hard enough for an impressing optimization by evolutionary algorithms. But still you can
see how these algorithms work, and the observed results support the theoretic assertion that
they will find the or a good solution in the most frequent cases.

Future investigations will be concentrated on two directions:

1. The definition of effective evolution parameters for problems like the optimal control of
multi-location systems with transshipments and

2. The application of the evolutionary approach to multi-location systems with non-linear cost
functions.
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